Prof. Dr. Alfred Toth

Ortskomplementäre Dualität

1. Das peircesche Zeichen hat keinen ontischen Ort. Entsprechend gibt es für jede n-stellige semiotische Relation genau eine duale Relation, z.B.

$$1 \times 1 = 1$$

$$(1.2) \times (1.2) = (2.1)$$

$$(1, 2, 3)$$
 $\times (3, 2, 1)$

$$(3.1, 1.2)$$
 $\times (3.1, 1.2) = (2.1, 1.3)$

$$(3.1, 2.2, 1.2)$$
 $\times (3.1, 2.2, 1.2) = (2.1, 2.2, 1.3)$

2. Dagegen hängt die Anzahl ontischer Orte (ω_i) von der Größe des der Relation zugehörigen ortsfunktionalen Zahlenfeldes (vgl. Toth 2016) ab. Minimale Zahlenfelder, wie sie in Toth (2020a) definiert wurden, weisen den Rⁿ quadratische Zahlenfelder der Größe nⁿ zu. Eine dyadische Relation wie etwa (1.2) bekommt also ein 2²-Zahlenfeld, eine 3-stellige Relation wie (1, 2,3) bekommt ein 3³-Zahlenfeld, usw. Wegen der paarweisen Differenz der ω_i ist es also bereits unmöglich, eine Relation wie R² = (1, 2) eindeutig auf das Zahlenfeld

abzubilden. Beispielsweise gibt es unter den drei Zahlenfeldern

$$\emptyset$$
 \emptyset \emptyset 1 \emptyset 2

keine zwei, die dual sind im Sinne der linearen Dualität

$$\times (1, 2) = (2, 1).$$

sondern es sind, um diese und weitere Zahlenfelder ineinander zu überführen, wie in Toth (2020b) gezeigt, nicht weniger als 12 Dualisatoren nötig.

$$x$$
 y x \emptyset x \emptyset

Ø Ø y X y У Ø Ø Ø Ø X X Ø Ø Ø Ø y y Ø Ø X X X y Ø Ø Ø Ø X X

Ø

У

Wir schreiben nun diese 12 Zahlenfelder linear in der Form von Peano-Folgen

y

Ø.

1) 1 2 Ø Ø

y

X

- 2) 1 Ø 2 Ø
- 3) 1 Ø Ø 2
- 4) 2 1 Ø Ø
- 5) 2 Ø 1 Ø
- 6) 2 Ø Ø 1
- 7) Ø Ø 2 1
- 8) Ø 2 Ø 1
- 9) 2 Ø Ø 1
- 10) Ø Ø 1 2
- 11) Ø 1 Ø 2
- 12) 1 Ø Ø 2.

Wir finden nun in diesen Beispielen von ortsfunktionaler Dualität eine Eigenheit, die wir ortskomplementäre Dualität nennen: Zwei Relationen sind ortskomplementär gdw. wenn für mindestens einen Wert w gilt: $w(\omega_i) \neq w(\omega_i)$. So sind etwa die beiden folgenden Paare komplementär

- 1) 1 $\underline{2}$ $\underline{\emptyset}$ \emptyset 5) 2 \emptyset $\underline{1}$ $\underline{\emptyset}$
- 2) 1 $\underline{\emptyset}$ 2 $\underline{\emptyset}$ 6) 2 $\underline{\emptyset}$ $\underline{1}$,

nicht aber die beiden Paare

- $1) \quad 1 \quad 2 \quad \emptyset \quad \emptyset \qquad \qquad 3) \quad 1 \quad \emptyset \quad \emptyset \quad 2$
- 4) 2 1 \emptyset \emptyset 6) 2 \emptyset \emptyset 1.

Literatur

Toth, Alfred, Einführung in die qualitative Arithmetik. In: Electronic Journal for Mathematical Semiotics, 2016

Toth, Alfred, Die Verortung des Zeichens. In: Electronic Journal for Mathematical Semiotics, 2020a

Toth, Alfred, Dualität in der Arc Pair Semiotik. In: Electronic Journal for Mathematical Semiotics, 2020b

14.10.2020